Туристический портал - NataliSudak

Туристический портал - NataliSudak

» » Авиация россии. Чертежи и описания самолёта "Quickie" Вот он - грамотный прототип

Авиация россии. Чертежи и описания самолёта "Quickie" Вот он - грамотный прототип

Родился: 07.09.1970
Рост: 176 см
Вес: 90 кг
Менеджер крупной энергетической компании.
Шестикратный чемпион России, четырехкратный вице-чемпион мира, действующий чемпион мира по авиамодельному спорту в классе реактивных радиоуправляемых моделей-копий.

РОБЕРТУС ПРО ВСЕ САМОЕ ВАЖНОЕ В АВИАМОДЕЛИРОВАНИИ

1. Как все запущено

В авиамоделизме по большому счету есть три главных направления: свободнолетающие модели, кордовые и радиоуправляемые. Хрестоматийный пример свободнолетающих - планер, который запускается с леера (нечто вроде катапульты) и летит куда придется. Кордовые - это такая модель «на поводке» (как правило, с двигателем внутреннего сгорания), фактически она летает по полусфере, в центре которой стоит спортсмен. Радиоуправляемые модели максимально похожи на настоящие самолеты - они «как большие» летают сами по себе и способны выполнять фигуры пилотажа.

2. Настоящая дисциплина

В авиамодельном спорте больше 60 дисциплин, я занимаюсь конкретно радиоуправляемыми реактивными копиями - считается, что это самый сложный класс в авиамодельном спорте. В соревнованиях копий судьи оценивают прежде всего, насколько точно ты повторил внешний облик настоящего самолета - его размеры, деталировку, раскраску. Эта оценка за «экстерьер» суммируется с баллами за пилотажные полеты, и по этой общей оценке определяется победитель. Для сравнения, в классе пилотажных моделей, грубо говоря, достаточно уметь лучше всех крутить «бочки» и «кубинские восьмерки». К тому же реактивные модели самые быстрые (скорость до 350 км/ч) и могут выполнять самые сложные пилотажные фигуры.

3. Дело - труба

Модель может быть какого угодно размера, главное, чтобы она весила меньше 20 кг без топлива. В противном случае, в Европе она переходит в категорию «взрослых» самолетов и до соревнований тебя не допустят. Серьезные моделисты делают корпус модели самостоятельно из стекло- и углеволокна, покупают лишь двигатель и электронную начинку. Над корпусом копии Як-130 (2,5 метра), с которой я победил в 2011 году на чемпионате мира в Дейтоне (США), я провозился долго. Даже хотел продуть модель в аэродинамической трубе в Жуковском, однако выяснилось, что очередь в ЦАГИ занята китайскими аэрокосмическими компаниями на 5 лет вперед. Тогда пришлось выкручиваться своими силами: я закрепил несущие поверхности модели на крыше спортивной машины друга, а затем разогнал автомобиль на взлетно-посадочной полосе до 280 км/ч, снимая происходящее на видео, чтобы следить за поведением деталей в скоростном потоке. Способ сработал - я смог сделать модель, которая полетела с первого раза. Так редко бывает.

4. С небес на землю

Меня часто спрашивают, летаю ли я на настоящих пилотажных самолетах. Да я много на чем летал, даже на реактивном истребителе, но только в качестве пассажира. Естественно, я пробовал себя и в качестве пилота, летал с инструктором, но это был просто опыт, необходимый для занятий авиамоделизмом. Для счастья мне вполне достаточно управлять летающей в небе моделью - самому в кабине сидеть не обязательно. С пультом в руках я соревнуюсь с лучшими моделистами в мире. В общем, я все равно пилот, но стою на земле, и это меня вполне устраивает.

5. Выйдешь в поле

По правилам Международной авиационной федерации (FAI) авиамоделистам разрешается тренироваться и соревноваться только на площадках, где нет зданий, дорог и людей. Причем такое пространство должно быть как минимум 300 м в длину и 40–50 м в ширину. Кроме того, моделям запрещено подниматься над землей выше 200 м и летать в пятикилометровой зоне вокруг аэропортов и аэродромов. В России четких правил, регламентирующих полеты авиамоделей, нет. Но авиамоделист несет на общих основаниях ответственность за любой ущерб, который он может причинить, запуская модель. Летай в соответствии с требованиями FAI, ну и держись подальше от охраняемых объектов, вроде военных частей.

6. У моделей больше «же»

В авиамоделировании принцип выполнения пилотажных фигур тот же, что и в «большой» авиации, но фигуры могут быть сложнее с точки зрения геометрии. Модель может выдержать перегрузки в 20 g, а возможности настоящего самолета ограничивает физиология человека. Даже тренированный пилот сохраняет работоспособность лишь при перегрузках до 10 g. Поэтому в военной авиации будущее за беспилотными летающими аппаратами (БПЛА). Оператор БПЛА скоро нужен будет только для того, чтобы принимать решение о применении оружия. А вот в гражданской авиации человека заменить нельзя, все-таки техника не может обеспечить стопроцентную надежность. Я бы чувствовал себя неуютно в самолете, которым управляет только электроника или оператор с земли.

Турбина реактивной модели прожорлива, она расходует около 150–200 мл топлива в минуту. Но, с другой стороны, долго управлять моделью, несущейся со скоростью 300 км/ч, не получится - ты быстро устанешь. Поэтому на такие самолеты обычно ставят трехлитровый бак, его хватает на 15 минут полета - вполне достаточно и для выполнения программы на соревнованиях, и для обычных тренировок. В качестве топлива используется авиационный керосин, в него добавляют масло для турбин - у моделей, в отличие от настоящих реактивных самолетов, нет отдельной системы смазки двигателя.

ПЯТЬ НАХОДОК И ПОТЕРЬ, БЕЗ КОТОРЫХ ВИТАЛИЙ НЕ СТАЛ БЫ ЧЕМПИОНОМ МИРА

1. А «Як» же

Я интересовался самолетами с детства. Чего еще ждать от мальчика, который рос в авиационном гарнизоне? Лет в 7 мне в руки попала книжка Александра Сергеевича Яковлева «Рассказы авиаконструктора». Прочитав ее, я сразу записался в авиамодельный кружок.

2. Один на всех

Радиоуправляемых моделей в то время, когда я учился в школе, в стране практически не было. Например, на всю Крымскую область, где я тогда жил, был один такой планер. Управлять с земли у него можно было только рулем высоты и рулем направления, и то секунд 5–10. Мы его увидели на соревнованиях в шестом классе, и для нас это было что-то невообразимое.

3. Тайное желание

После МАИ, году в 94-м, когда к нам только начали завозить аппаратуру радиоуправления, я впервые увидел комплект в магазине и загорелся его покупкой, потому что с детства осталась мечта полетать. На него нужна была огромная по тем временам сумма - $450. Я копил почти полгода, откладывая тайком от жены с зарплаты.

4. Заграница нам поможет

В России до начала нулевых не было реактивных авиамоделей - турбины продавались только за границей, стоили дорого, и их приходилось запускать вручную, а, судя по откликам, это был сложный процесс, который в 30% случаев заканчивался пожаром. Но потом немцы изобрели для авиамоделистов турбины с автоматическим запуском. В 2001 году за границей я увидел в магазине такую турбину и тут же ее купил. Самолет под нее я строил всю следующую зиму в свободное от работы время, поэтому первый полет на реактивной модели в нашей стране состоялся только в 2002 году.

5. Через тернии

Первый раз на чемпионат мира по реактивным копиям я поехал в 2003 году. Мой самолет развалился в воздухе. Дело было в Южной Африке, поэтому после аварии весьма живописно горела саванна (не волнуйся, огонь быстро потушили пожарные). На следующем ЧМ в 2005 году в Венгрии моя модель разбилась из-за конструктивных ошибок. Только в 2007 году мне удалось успешно выполнить программу на чемпионате мира и занять второе место. В общем, путь к титулу чемпиона мира был тернист.

КАК НАУЧИТЬСЯ УПРАВЛЯТЬ РАДИОУПРАВЛЯЕМОЙ РЕАКТИВНОЙ МОДЕЛЬЮ

Симулируй

Прежде чем подниматься в воздух, купи в авиамодельном магазине компьютерный симулятор - программу и пульт, похожий на настоящий. С ним ты сможешь попробовать пилотировать любую радиоуправляемую модель, начиная от планера и заканчивая реактивной копией. Реализм настолько велик, что, например, я тренируюсь зимой в основном на симуляторе, и мне этого хватает, чтобы поддерживать хорошую форму.

Найди учителя

Есть такая система «тренер-ученик»: два передатчика соединены проводом, и тренер с помощью переключателя может передавать управление моделью ученику или, при необходимости, брать его на себя. Например: взлетает тренер, затем он передает управление ученику, тот летает, затем, если ученик совершил ошибку, тренер снова берет управление на себя и сажает модель. Полезная система - помогает избежать дорогостоящих авиакатастроф на начальном этапе.

Нарабатывай опыт

Начинать нужно с простого небольшого винтового самолета с электродвигателем, затем купи модель побольше, с ДВС, - она будет сложнее в эксплуатации, но быстрее. Следующий шаг - пилотажная модель с ДВС, у которой крыло не с верху, а с низу корпуса - она более маневренная. Ну и наконец, перед покупкой реактивной потраться на импеллерную модель - она хорошо имитирует поведение реактивной. Конструкторы умудрились создать реактивную тягу без реактивной турбины - струю воздуха, толкающую модель вперед, формирует сквозной тоннель в фюзеляже самолета, в котором установлен электродвигатель с крыльчаткой. Импеллерные модели летают значительно медленнее моделей с турбинами, но зато они и гораздо дешевле. Будь готов к тому, что путь от симулятора до реактивной модели займет у тебя 3–5 лет.

Вопрос проведения теоретических занятий для школьников по авиационному профилю может стать головной болью для преподавателя, а может подвигнуть его на творческие дела в плане разнообразия теоретического курса. Мой опыт преподавания занятий в тренажерном классе в качестве инструктора – тренажера планера для школьников побудил меня к такому поиску.

Вряд ли школьникам будут интересны теоретические выводы уравнения Бернулли, а также законы Гей-Люсака и Бойля-Мариотта вместе взятых. Гораздо интереснее показывать что-то на практическом примере, например, запустить планер и объяснить, почему он летит именно по такой траектории, а не по другой. Именно с этим вопросом столкнулся ваш покорный слуга, когда сочинял теоретические лекции для курса «Основы пилотирования самолёта через планер», связанный с полётами на планерном тренажере.

Мои поиски привели меня к статье «Основы авиамоделирования», по мотивам симулятора KSP, где простым и понятным для всех языком были описаны аэродинамические истины с их практическим применением. Предлагаю всем желающим погрузиться в основы аэродинамики и проектирования летательных аппаратов, а если появиться желание то и самому испытать это в игре. В качестве проводника в основы аэродинамики будет выступать мистер Кептин и игровое пространство программы KSP. Оригинал статьи можно найти по адресу: www.forum.kerbalspaceprogram.com.

Практическая аэродинамика с помощью KSP

KSP – это игра, в которой игроки создают и управляют своими собственными космическими программами. Строительство челноков, управление ими и запуск миссий в открытый космос – вот пространство для творчества в KSP.

Хотите построить ракету и облететь планету, пожалуйста, есть все необходимые инструменты. Вопрос в другом: хватит ли топлива, выдержит ли шасси при посадке, туда ли опустится спасательная капсула. Вообщем все вопросы технического плана, а также самостоятельного управления построенными летательными аппаратами, игроку придется брать на себя. При желании ещё можно обременить себя финансовым бременем, и получать субсидии на космонавтику взамен на полезные исследования разного уровня. В качестве перспектив для развития есть возможность осуществить выход человека в открытый космос, создать космическую станцию, а даже основать колонию-поселение на другой планете.

Одно из дополнений к игре связано с созданием самолётов: собрать самолёт из отдельных частей, запустить и посмотреть, что из этого получится. Свобода творчества и, в результате, понимание законов аэродинамики. Поскольку после нескольких неудач на посадке конструктор начнет думать головой по поводу усиления стойки шасси, либо облегчения конструкции.

Если кому-то интересно, вот так выглядит урок по созданию самолёта:

Игра постоянно обновляется. Обновления и нововведения происходят возможно даже сейчас, а на сайте лежит новый мод, когда вы читаете эти строки. Для знакомства с программой достаточно скачать с сайта игры демоверсию.

Что такое центр давления и почему его сравнивают с центром масс

Прежде чем перейти к моделированию самолетов стоит немного погрузиться в теорию аэродинамики. Размышления на эту тему уместно начать с вопроса: «Что такое центр давления?». Центр давления – это точка, к которой приложена суммарная подъемных сил разных частей самолёта: крыльев и хвостового оперения.

На рисунке показаны аэродинамические поверхности, которые создают подъемную силу. Суммарная подъемная сила находится в точке, которая называется центром давления.

В том случае, если центр тяжести будет находиться слишком близко к центру масс, летательный аппарат может стать чрезмерно маневренным (другими словами «нейтрально стабильным»), поскольку у него будут отсутствовать естественные тенденции к стремлению двигаться в любом направлении. Вообще желательно стремиться к тому, чтобы центр давления находился позади центра тяжести. В этом случае летательный аппарат будет стремиться падать вперед.

Правила центров

Если Ц.Д. впереди Ц.М., то летательный аппарат подвержен внезапным переворотам, если Ц.Д. и Ц.М. совпали, то летательный аппарат имеет чрезмерную маневренность, если Ц.Д. находится немного позади Ц.Т., то летательный аппарат будет иметь высокую маневренность, если немного подальше, то в полёте будет появляться большая устойчивость, если сильно дальше, то получится дротик для дартс.

Если взять картонную модель самолета и подвесить его на нитке к потолку, то точка, в которой самолёт крепится к нитке, и будет являться центром давления.

Если вы строите летательный аппарат, у которого Ц.Д. находится сильно впереди Ц.М., то это очень близко походит на крепление носа самолёта за нитку. Каждый раз при взлете он будет стремиться перевернуться вверх носом. В то же время, если Ц.Д. у самолёта находится несколько ниже Ц.М., то при взлёте летательный аппарат будет стремиться перевернуться вверх тормашками.


Местоположение и ориентация подъемных поверхностей определяет центр давления. К нему мы вернемся через некоторое время.… Но сначала перейдем к рассмотрению ещё одной потенциально важной силы и точки её приложения – центра тяги (Ц.Т.).

Центр тяги – это точка приложения всех суммарных сил тяги, действующих на летательный аппарат. Если у летательного аппарата один двигатель, то Ц.Т. будет находиться как раз в центре двигателя.

Все прекрасно, но только до тех пор, пока центр тяги вашего двигателя находится на одной линии с центром масс летательного аппарата. Что если это не так… В этом случае уместно говорить про несимметричную тягу.

Вот тут и начинаются различные конфузы:

Действие несимметричного центра тяги можно сравнить по действию с моментом от приложения гаечного ключа. Негативные последствия от такого вмешательства можно приуменьшить работой плоскостей управления или увеличением подъемной силы. Но здесь заключен подвох: эффективность аэродинамических поверхностей меняется в зависимости от высоты полёта и плотности воздуха.

Так что с изменением скорости и высоты полёта также должны меняться и другие характеристики летательного аппарата (например, с помощью системы автоматической стабилизации полёта САСП).

Именно поэтому у всех успешных проектов космических кораблей центр масс располагается на одной линии с центром тяги.


Рассмотрим подробнее плоскости управления летательным аппаратом: движущиеся узлы, которые позволяют управлять положением летательного аппарата. Все они действуют как рычаги на центр масс, причем, чем дальше точка приложения сил от центра масс, тем большее усилие можно создать.


Органы управления на рисунке – это элевоны, гибрид элеронов и рулей высоты. Контрольные плоскости создают подъёмную силу, но они также создают сопротивление воздуха. Элевоны уменьшают количество деталей, таким образом уменьшая суммарное сопротивление. Перебирая всевозможные варианты сочетаний плоскостей управления можно увидеть их плюсы и минусы.

Каждому самолёту свои крылья

Перейдем к магическому слову – крылья! Начнем знакомство с соотношения сторон: размах, поделенный на хорду (отношение длины и ширины).

Каждая из представленных схем летательных аппаратов имеет одинаковую площадь, но разную форму. Каждая форма имеет свои преимущества и недостатки. Эти различия становятся ещё более поразительными, если подключить модуль Ferram Aerospace Research, который будет показывать более реалистичную модель сопротивлений.

Вернемся к вопросу стреловидности крыльев: угол, под которым находится крыло по отношению к фюзеляжу. Все видели ловкие истребители, но на что на самом деле влияет стреловидность крыла.

Когда скорость самолёта становится близка к скорости звука, ударные волны становятся сверхзвуковыми. Стреловидность крыльев уменьшает сопротивление на околозвуковых скоростях, поскольку изгиб крыла уменьшает лобовое сопротивление, что можно увидеть по воздушному потоку.

Наикратчайшее расстояние между двумя точками – это прямая. Поскольку воздушный поток через стреловидное крыло проделывает больший путь, чем через прямое крыло и контур крыла, который пересекает поток, не выглядит как стенка, то ударных волн в случае со стреловидным крылом не создается.

Что касается игры KSP, то в стандартной версии эффект стреловидности не играет большого эффекта. Этим эффектом можно насладиться в дополнительной версии игры, которая называется Ferram Aerospace Research.

Идем дальше…. Рассматриваем крепление крыла и поперечный угол крыла, то есть угол наклона крыла. Если центр давления располагается над центром масс, то повышается устойчивость летательного аппарата. Перенос же крыльев наверх фюзеляжа создает стабилизирующий эффект для летательного аппарата, который носит название поперечного эффекта.

Следовательно, если центр давления располагается ниже центра масс, либо крылья переносятся вниз фюзеляжа, то самолёт становится более маневренный, но менее устойчивым в полёте.

Устойчивость летательного аппарата можно контролировать переносом крыльев выше – ниже относительно фюзеляжа, другими словами переносом центра масс.

Практическое применение комбинаций крыльев и центров масс:

Наконец, короткий экскурс в тему увеличения подъемной силы в игре KSP. Этого можно добиться следующим путём:

  • Добавить площадь крыльям
  • Увеличить скорость

Увеличение количества крыльев, как и их площади, приведет к увеличению лобового сопротивления и к замедлению самолёта, с одной стороны. С другой стороны, это приведет к снижению скорости сваливания и минимальной скорости полёта, а, следовательно, уменьшению взлетной и посадочной дистанций.

Слишком большое количество крыльев и плоскостей управлений приведет к тому, что летательным аппаратом придется сложнее управлять: малейшие колебания на ручке управления будут вызывать сильные изменения в направлении полёта. Масса самолёта и его желаемая крейсерская скорость полёта (сваливания) будут определять количество подъемных сил, требуемых для самолёта.

Чем круче угол атаки, тем больше подъемная сила. Но это правило работает до некоторых пор: «до критического угла атаки». После достижения критического угла аэродинамический поток начинает переходить в срыв, а самолёт теряет подъемную силу. В KSP угол атаки становится критическим при 20°, в зависимости от модели.

Также стоит рассказать про «углом падения». Угол падения — это угол, под которым крыло находится относительно фюзеляжа. Рост этого угла увеличивает абсолютное значение угла атаки и повышает подъемную силу, но в тоже время увеличивает лобовое сопротивление.

Кому-то может показаться: «Оно того стоит!». Но конструкция крыла становится сложнее и изменяется характер полёта. Крыло с положительным углом атаки имеет отличающиеся подъемные свойства по сравнению с горизонтальным крылом. Другими словами подъемная тяга у такого крыла становится гораздо больше, чем у крыла с горизонтальным расположением.

Поскольку основное крыло создает чрезмерно большую подъемную силу, по сравнению с хвостовым стабилизатором, пилоту придется опускать вниз рычаг управления самолётом или работать триммером на хвостовом оперении, но лишь бы не дать самолёту подняться вверх. И наоборот, ручку убирать на себя в том случае, если нос самолёта опуститься слишком низко.

В Kerbal Space Program летательный аппарат, спроектированный с нулевым углом падения, проще поддается контролю, но имеются также доводы в пользу изменения этого угла:

  • можно заранее установить идеальный крейсерский угол тангажа
  • нет необходимости задирать резко тангаж вверх во время взлета (для предотвращения удара хвостом)

В тексте прозвучало упоминание про «крейсерский режим полёта»: это относится к режиму, в котором летательный аппарат будет вести себя лучше всего. Если самолёт не находится в таком режиме полёта, то все его узлы и сам полёт не будут находиться в оптимальном режиме: повышенный расход топлива, увеличенный износ двигателя. Изначально в конструкции все закладывается именно исходя из условий полёта в оптимальных условиях: оперение, двигатели, площадь крыльев, материалы и многое другое рассчитывается на полёт в оптимальных условиях.

С чего начать проектировать шасси

Теперь перейдем к вопросу конфигурации шасси, вот некоторые варианты:

Конфигурация «трицикл» проще в регулировке, чем четырехколесная: её проще посадить, чем конфигурацию с опорой на хвостовое колесо.

Правильный подход при проектировании заключается в том, чтобы разместить заднее шасси прямо под центром масс. В таком случае летательный аппарат может свободно разворачиваться и набирать нужный угол атаки при взлете.

Если по некоторым причинам появляется необходимость размещать заднее колесо дальше от центра масс, тогда стоит задуматься над тем, чтобы разместить его несколько выше переднего шасси. В этом случае мы получил заранее положительный угол атаки и, как следствие, упростим взлет летательного аппарата.

Посадочные шасси должны быть расположены так, чтобы для взлёта требовалось от пилота лишь минимальное усилие на ручке.

Самолёты с хвостовым оперением взлетают именно по этому принципу: сама схема такого самолёта гарантирует автоматический взлет при достижении определенной скорости.



Отклонение от курса при посадке может обозначать одно из двух:

  1. Взлетно-посадочная полоса не является прямой на самом деле, поскольку шасси располагается перпендикулярно «взлётке» и смотрят строго вперед.
  2. Чрезмерный вес, приходящийся на одно из шасси, может привести к прогибу стойки и, как следствие, уводу самолёта с траектории.
  3. Также слишком большая прижимная сила на одном из шасси приведет к тому, что остальные не будут полностью находиться в зацеплении с площадкой. Этот эффект называется «колеса тачки».

Возможные способы решения этой задачи:

  • Выправить стойку шасси в редакторе
  • Укрепить стойку шасси с помощью подкоса
  • Распределить вес на большое число стоек шасси
  • Снизить вес на шасси с помощью облегчения конструкции самолёта
  • Сделать большие шасси и преодолеть усилия в рулевом управлении

Лобовое сопротивление и его влияние на параметры самолёта


В программе KSP используется простая модель лобового сопротивления. Чем больше массы будет добавлено (в виде деталей), тем больше будет создаваться сопротивление воздуха, независимо от того, находится ли модель в воздушном потоке или нет.

Каждая деталь имеет максимальное значение лобового сопротивления (в большинстве случаев это значение 0,2 от максимального). Значение лобового сопротивления можно посчитать по заданной формуле:

Лобовое сопротивление = Плотность воздуха * Скорость(в квадрате) * Коэффициент максимального сопротивления * Массу

Заметьте, что лобовое сопротивление зависит от массы и от коэффициента и не зависит от числа деталей. Уменьшение массы приведет к улучшению аэродинамики. Конструирование аэродинамического профиля часто сводится к как можно большему уменьшению количества деталей, а также двигателей, плоскостей управления, топливных баков, но при сохранении управляемости летательного аппарата.


Если вы хотите преуспеть в том, что изображено на картинках, Вам следует воспользоваться модом KSP, который более реалистично подходит к расчету лобового сопротивления. Этот мод называется Ferram Aerospace Research. Я люблю Ferram, именно поэтому я устанавливаю его везде, где только можно.

Надеюсь, это повествование зарядило Вас энтузиазмом для того, чтобы творить и создавать свои собственные самолёты и космические корабли! Удачи!

Source unknown

В архиве размещено описание легкого одноместного самолета оригинальной схемы.
Самолет носит название "Quickie".

Архив представляет собой отсканированную рукопись со схемами в формате Adobe PDF.

Хотя на первый взгляд, этот самолет кажется уж чересчур необычным и может вызвать недоверие, все же, прочитайте следуюший текст.
Это - выдержка из книги В.П.Кондратьева "Самолеты строим сами". Как следует из его слов, самолет построенный по такой схеме обещает очень даже хорошие характеристики.

Достоинства «утки» хорошо известны. Вкратце они сводятся к следующему, в отличие от нормальной схемы, у статически устойчивой «утки» подъемная сила горизонтального балансирующе-го оперения суммируется с подъемной силой крыла. Поэтому при тех же несущих свойствах площадь крыла можно, грубо говоря, уменьшить на величину площади оперения, в результате чего уменьшаются размеры, масса и аэродинамическое сопротивление самолета, а его аэро-динамическое качество растет (рис 97). Еще более выгодным является тандем, который по способу балансировки принципиально не отлича-ется от «утки», но позволяет создать еще более компактную машину. По сути дела, в тандемной компоновке общая несущая площадь разбивается на два равных или приблизительно равных крыла, линейные размеры которых примерно в 1,4 раза меньше аналогичного крыла самолета нормальной схемы.

Отрицательные же свойства «утки» связаны, прежде всего, с влиянием переднего крыла на заднее. Переднее скашивает вниз и подторма-живает воздушный поток, обтекающий заднее крыло, его эффективность падает (рис 98). Оптимальное решение этой проблемы в том, чтобы разнести как можно дальше крылья по длине фюзеляжа и по высоте. Для того чтобы заднее крыло не попадало в вихревой след переднего при полете на больших углах атаки, переднее крыло поднимают выше заднего или опускают его как можно ниже. Так сделано, в частности, на тандеме «Квики». Несоблюдение этого условия приводит к продольной неустойчивости на больших углах атаки.

Следует учитывать и еще одно условие. При полете на больших углах атаки перед сваливанием срыв потока должен наступать в первую очередь на переднем крыле. В противном случае самолет при сваливании будет резко задирать нос, и переходить в штопор. Это явление называется «подхват» и считается совершенно недопустимым. Способ борьбы с «подхватом» на «утке» найден давно: достаточно увеличить угол установки переднего крыла по отношению к заднему. Разница в углах установки должна составлять 2—3°, что гарантирует срыв потока в первую очередь на переднем крыле. Далее самолет автоматически опускает нос, переходит на мень-шие углы атаки и набирает скорость — таким образом, реализуется идея создания несваливаемого самолета, конечно, при соблюдении требуемой центровки.

..
Самолеты схемы тандем и их аэродинамические особенности :
Затенение заднего крыла передним при полете на больших углах атаки. 1 - малая интерференция в крейсерском полете на малых углах атаки; 2 - сильное затенение заднего крыла на больших углах самолета неудачной схемы, 3 - удачное расположение крыльев с малой интерференцией на больших углах атаки (m - коэффициент продольного момента отрицательный, наклон кривой xapaктepeн для устойчивого самолета, α - угол атаки)

Строительство тандемов носило эпизодический характер до тех пор. пока в 1978 г. все тог же неутомимый Рутан не продемонстрировал на слете конструкторов-любителей США в городе Ошкоше свой вызывающе «непонятный» тандем «Квики». Приступая к разработке этой машины, Рутан ставил задачу создания самолета с высокими летными характеристиками при двигателе минимально возможной мощности. Конечно, наилучшие результаты можно было по-лучить, используя тандемную схему. Действительно, два крыла площадью примерно по 2,5 м^2 позволили сделать самолет минимальных габаритных размеров с наименьшим аэродинамиче-ским сопротивлением и высоким аэродинамиче-ским качеством. При этом двигателя в 18 л. с. хватило для достижения скорости 220 км/ч, скороподъемности 3 м/с, потолка 4600 м. Взлетная масса самолета, изготовленного целиком из пластика, составляет 230 кг. Как и предыдущие творения Рутана, «Квики» был размножен любителями разных стран в десятках экземпляров. Американские авиационные специалисты считают «Квики» «минимальным» самолетом. Он экономичен, дешев и нетрудоемок в постройке. Производственный цикл его изготовления составляет всего 400 человеко-часов. Конструкторы-любители многих стран могут приобрести и чертежи, и набор заготовок, и полностью гото-вый аппарат.

Последователи Рутана нашлись и в нашей стране. На СЛА-84 куйбышевский самодеятельный клуб «Аэропракт», возглавляемый студентом Ю. Яковлевым, представил свой вариант «Квики» —А-8

Хороших самодеятельных клубов в нашей стране уже немало. Куйбышевский — один из самых известных. «Авиация на практике» — так члены клуба расшифровывают название своей «фирмы», созданной в 1974 г. в красном уголке заводского общежития выпускником Харьковского авиационного института Василием Мирошником. Судьба «Аэропракта» складывалась труд-но. Клуб неоднократно закрывался, «разгонялся», менял адреса и руководителей. Однако неудачи и трудности только закаляли молодых энтузи-астов.

За более чем пятнадцатилетнюю историю через «Аэропракт» прошли десятки человек — школьников, студентов, молодых рабочих, ставших впоследствии хорошими инженерами, конструкторами, летчиками. В традициях «Аэропракта» полная свобода технической мысли и демократия. В клубе всегда существовало не-сколько небольших творческих групп, параллельно строивших три-четыре летательных аппарата. А для самых смелых и «бредовых» технических идей всегда существовал лишь один судья — практика и собственный опыт. Именно такая атмосфера творческого сотрудничества н сорев-нования стала постоянным источником энтузи-азма, благодаря которому «Аэропракт» до сих пор существует. Именно такие условия дали возможность наиболее полно проявить талант наших лучших конструкторов-любителей, в том числе Василия Мирошника, Петра Альмурзнна, Михаила Волынца, Игоря Вахрушева, Юрия Яковлева и многих других — постоянных участ-ников и призеров слетов СЛА.

Самолеты, созданные в «Аэропракте», хорошо известны. Для того чтобы лучше представить масштабы деятельности «Аэропракта», достаточ-но лишь напомнить названия аппаратов этого клуба, принимавших участие в слетах СЛА. Сре-ди них — самолеты А-6, А-11М, А-12, гидросамолет А-05, планеры А-7, А-10Б и мотопланер А-10А, имеющие «фирменное» обозначение «А» и построенные в «филиале» «Аэропракта» — СКБ Куйбышевского авиационного института под руководством В. Мирошника. Почти все пере-численные летательные аппараты были призерами слетов.

Наибольший успех выпал на долю тандема А-8 («Аэропракт-8»), построенного студентом Куйбышевского авиационного института Юрием Яковлевым.

Внешне А-8 напоминает «Квики». Но надо отметить, что до тандема Ю. Яковлева у нас в стране об особенностях этой схемы было известно очень мало. Каким должно быть взаимное расположение крыльев и их профиль, где расположить центр тяжести самолета, как поведет себя машина при полете на больших углах атаки? На все эти вопросы можно было ответить, лишь испытав аппарат.

..
Самолет-тандем А-8 (Ю. Яковлев, "Аэропракт"). Площадь переднего крыла - 2,47 м2, площадь заднего крыла - 2,44 м^2, взлетная масса - 223 кг, масса пустого - 143 кг, максимальное аэродинамическое качество - 12, максимально допустимая скорость - 300 км/ч, максимальная эксплуатационная перегрузка - 6, разбег - 150 м, пробег - 150 м.
1 - двигатель, 2 - педали, 3 - воздухозаборник вентилятора кабины, 4 - узлы навески крыльев, 5 - тяги управления элеронами, 6 - элерон, 7 - тяги управления рулем направления и хвостовым колесом (трос в трубчатой оболочке), 8 - вал управления, 9 - парашют ПЛП-60, 10 - рычаг управления двигателем, 11 - бензобак, 12 - тяги управления рулем высоты, 13 - рукоятка запуска двигателя, 14 - резиновые амортизаторы подвески двигателя, 15 - руль высоты, 16 - боковая ручка управления, 17 - замок фонаря, 18 - выключатель зажигания, 19 - указатель скорости, 20 - высотомер, 21 - авиагоризонт, 22 - вариометр. 23 - акселерометр, 14 - вольтметр

А-8 построен был очень быстро, но летать стал не сразу. Попытка первого взлета на СЛА-84 в Коктебеле завершилась неудачей: после короткого разбега самолет скапотировал. Пришлось существенно сдвинуть назад центровку и изменить углы установки крыльев. Только после этих доработок зимой 1985 г. самолет смог подняться в воздух, демонстрируя все преимущества необычной аэродинамической компоновки. Компактность, малая смачиваемая поверхность и, как следствие, низкое аэродинамическое сопротивление, присущие самолетам такой аэродинамической схемы, позволили на А-8, оснащенном мотором мощностью 35 л. с, добиться максимальной скорости 220 км/ч и скороподъемности 5 м/с. Испытания, проведенные летчиком-испытателем В. Макагоновым, показали, что самолет легок и прост в; управлении, обладает хорошей маневренностью и не срывается в штопор. На тандеме успешно летали его создатели и профессиональные пилоты. Для читателей будет представлять интерес оценка, данная самолету В. Макагоновым:

— При выполнении пробежек на СЛА-84 у А-8 обнаружилась несбалансированность в продольном канале управления, вследствие которой на разбеге развивался значительный пикирующий момент от заднего крыла на скорости, меньшей скорости отрыва. Этот момент невозможно было компенсировать рулем высоты. Пос-ле слета задачу сбалансированного взлета аэропрактовцы решили путем уменьшения угла установки заднего крыла до 0°. Этого оказалось достаточно, чтобы на разбеге при полностью взятой на себя ручке управления скорость подъема хвостового колеса до взлетного положения и скорость отрыва практически совпадали. После отрыва самолет легко балансируется в продольном канале. Тенденции к развороту и кренеиию отсутствуют. Максимальная скороподъемность — 5 м/с получена на скорости 90 км/ч. В горизонтальном полете достигнута максимальная скорость 190 км/ч. Самолет охотно увеличивает скорость до 220 км/ч при незначи-тельном снижении и при выходе в горизонтальный полет долго удерживает ее. Очевидно, при более удачном подборе воздушного винта фиксированного шага скорость может быть и большей. Во всем диапазоне скоростей самолет устойчив и хорошо управляем, перекрестные связи в боко-вой динамике проявляются четко. При полностью выбранной на себя ручке управления и работе двигателя на малом газе на скорости 80 км/ч наблюдается срыв потока на переднем крыле, самолет немного опускает нос с последующим восстановлением обтекания и увеличением тангажа. Процесс повторяется в автоколебательном режиме с частотой 2—3 колебания в секунду с амплитудой 5—10°. Срыв нерезкий, поэтому динамика имеет плавный характер. Тенденций к кренению и развороту при срыве не наблю-дается. Зависимость усилий на ручке и педалях от их хода линейна с максимальными значениями усилий по элеронам и рулю, высоты не более 3 кг и по рулю направления не более 7—8 кг. На самолете применена боковая ручка управления, поэтому расходы ручки невелики. Самолет продемонстрировал хорошую маневренность. На скорости 160 км/ч вираж выполняется с креном 60°, а форсированный вираж со ско-рости 210 км/ч с креном 80°. Кистевое управление, кресло эргономической выгодной формы и отличный с точки зрения обзора фонарь создают достаточно комфортные условия полета.

Накануне СЛА-85 «Аэропракт» в очередной раз закрыли, и все летательные аппараты оказались в опечатанном помещении. Юрию Яковлеву и его друзьям пришлось приложить немало усилий, прежде чем А-8 и другие самолеты клуба были доставлены в Киев. Попав на слет с небольшим опозданием, А-8 сразу же привлек к себе внимание и зрителей, и специалистов, а великолепные полеты В. Макагонова во многом способствовали тому, что тандем стал одним из самых популярных самолетов слета. При подве-дении итогов А-8 признан лучшим эксперимен-тальным самолетом. Его автор был удостоен призов ЦК ВЛКСМ, журнала «Техника — молодежи» и ЦАГИ. По рекомендации технической комиссии слета решением Минавиапрома А-8 передан в ЦАГИ для продувок в аэродинами-ческой трубе, а затем в Летно-испытательный институт для более детальных исследований в полете. Главным же призом для Юрия Яковлева, конечно, стало приглашение работать в ОКБ имени О. К. Антонова.

А-8 изготовлен целиком нз пластиков. Перед-нее и заднее однолонжеронные крылья имеют примерно одинаковую конструкцию. Крылья сде-ланы отъемными, но разъемов по размаху не имеют. При стыковке крылья вкладываются в специальные вырезы фюзеляжа. Переднее крыло снабжено аэродинамическим профилем RAF-32 н установлено под углом +3°, заднее с профилем «Вортман» FX-60-126 установлено с углом 0°.

Лонжероны крыльев имеют стенку, изготовлен-ную из стеклоткани, и полки, выложенные из углеволокна. Обшивка крыльев трехслойная {стеклоткань — пенопласт — стеклоткань). При выклейке деталей и сборке агрегатов планера А-8 использованы различные эпоксидные клеи, в основном К-153.

Фюзеляж типа полумонокок также имеет трех-слойную пластиковую конструкцию. Он выклеен зацело с килем. Шассн состоит из двух колес от карта размером 300х100 мм, установленных в специальных обтекателях на концах переднего крыла, и стеклопластнкового рессорного костыля с управляемым хвостовым колесом размером 140х60 мм. Главные колеса снабжены механи-ческими тормозами. Роль амортизатора шасси выполняет само довольно упругое переднее крыло. В систему управления самолета входят: закрылок на переднем крыле, выполняющий функции руля высоты, элероны на заднем крыле и руль направления. Привод управления элеро-нами и рулем высоты выведен на боковую ручку с малыми ходами, при этом ручка летчика в по-лете лежит на специальном подлокотнике. Таким образом практически реализован принцип кисте-вого управления. Боковая ручка управления А-8 на слете получила высокую оценку всех пилотов.

На А-8 использован двигатель РМЗ-640 от снегохода «Буран». Мотор развивает мощность 35 л. с. при 5000 об/мин. Воздушный винт имеет диаметр 1,1 м и шаг 0,7 м. Максимальная стати-ческая тяга винта — 65 кг. Бензобак расположен в носовой части фюзеляжа под ногами пилота. Мотор рассчитан на использование бензина А-76.

Единственный вопрос меня больше всего беспокоит после прочитанного:
Какова была дальнейшая судьба самолета А-8?
Куда же исчез самолет А-8 из ассортимента производства на нынешнем "Аэропракте"?

На финальном этапе испытаний аэродинамической модели нового гражданского лайнера МС-21 в аэродинамической трубе ЦАГИ, модель была выполнена в масштабе - 1:8. В современной истории отечественного авиастроения испытания на такой крупной модели проводились впервые.

Аэродинамическая труба и компьютер

МС-21 полностью был спроектирован с помощью компьютеров на основе 3D-моделирования всех его компонентов. Это позволило анализировать и прогнозировать многие аспекты поведения самолёта с использованием современного программного обеспечения. Но продувки моделей в аэродинамических трубах не утратили своей актуальности, они на практике подтверждают многие компьютерные расчёты.

Первые испытания в аэродинамической трубе моделей гражданского лайнера для измерения нагрузок, действующих на агрегаты планера, начались ещё в 2011 году. Специально для этого в ЦАГИ изготовили аэродинамическую модель масштаба 1:14. Уже тогда конструкторы «Иркута» сопоставили предварительные расчёты с результатами продувок и убедились в их совпадении.

Размер имеет значение

Для финального этапа испытаний в аэродинамической трубе Т-104 специалисты «Иркута» и ЦАГИ решили использовать новую, ещё более детальную модель МС-21 масштаба 1:8.

Т-104 - одна из самых больших аэродинамических труб в стране, её диаметр - семь метров.

Выбранный масштаб позволил проводить измерения нагрузок на агрегатах, например, створках шасси, которые невозможно выполнить на более мелких моделях. Кроме того, на такую модель можно установить большее количество многокомпонентных тензовесов для измерения сил, воздействующих на аэродинамические поверхности и элементы механизации планера самолёта, в том числе, - на стойки и створки шасси, секции предкрылков и закрылков, элероны, оперение. Всего было установлено 20 тензовесов. Такое количество позволило существенно сократить число дорогостоящих пусков аэродинамической трубы, так как за одну продувку регистрировалась информация со всех датчиков.

Во время испытаний в 2014 году каждый час в Жуковском проходило по две-три серии продувок модели. Инженеры наблюдали, как ведёт себя модель на разных этапах полёта во взлётной, посадочной и крейсерской конфигурациях при разных углах атаки и скольжения. На финальном этапе испытаний в 2015 ЦАГИ сделало до 700 продувок крупномасштабной модели.

Испытания на столь крупных моделях гражданских самолётов не проводились в течение последних 20 лет, - говорит Геннадий Андреев, кандидат технических наук, начальник сектора отделения аэродинамики самолётов и ракет.

Создание такой крупной модели МС-21 позволило учесть некоторые факторы, связанные с масштабным эффектом, например, обледенение самолёта. На разных стадиях полёта в зависимости от климатических условий может образовываться ледяной покров от 2 до 76 мм.

В ЦАГИ, например, раньше и сейчас при продувке малых моделей самолёта использовались имитаторы льда, сделанные из дерева. Сегодня для крупномасштабных моделей и полумоделей имитаторы льда изготавливаются при помощи метода компьютерного моделирования из специального пластика.

Результаты продувок с повышенной точностью позволят в дальнейшем сократить время испытаний самолётов и снизить финансовые затраты, ведь тестовые полёты существенно дороже стендовых испытаний.

Отечественный опыт говорит о том, что востребованность в продувках моделей самолётов в аэродинамических трубах только увеличивается. Все большее количество отделов ЦАГИ переходит на двух, а иногда и трёхсменные режимы работы. Помимо традиционных заказчиков - военных, крупных иностранных компаний - всё больше работ выполняется для отечественных производителей гражданской техники.

По материалам журнала ОАК "Горизонты" №3, 2014 г.

Даже самая простая модель самолета — это самолет в миниатюре со всеми его свойствами. Многие известные авиаконструкторы начинали с увлечения авиамоделизмом. Чтобы построить хорошую летающую модель, нужно немало потрудиться, изучить теорию полета аппаратов тяжелее воздуха. Зато какое увлекательное зрелище — полет модели и какая это радость для ее создателя и зрителей! Все многообразие авиамоделей можно разделить на несколько классов.

Самые популярные среди начинающих авиамоделистов — бумажные авиамодели. В бумажном авиамоделировании можно выделить несколько направлений.

Элементарные контурные модели.

Это простейшие летающие модели самолетов, которые вырезаются из листа бумаги несколькими взмахами ножниц. Они наиболее просты и доступны для начинающих. Нелетающие модели-копии. Они в точности повторяют внешний вид известных марок самолетов. Проектирование моделей-копий требует специальных знаний, большого терпения и труда. Занимаются ими опытные моделисты, коллекционирующие модели авиационной техники.

Свободнолетающие модели.

Такие модели, сделанные из плотной бумаги или тонкого картона, могут запускаться с помощью резины с рук, как из рогатки, или со специального устройства — катапульты. Для достижения наибольшей дальности полета относительное поперечное сечение их фюзеляжа делается меньше, чем у самолетов-прототипов. Есть свободнолетающие бумажные модели, движущиеся за счет тяги, развиваемой воздушным винтом с приводом от резиномотора или миниатюрного электромоторчика.

Безмоторные модели, запускаемые в полет с помощью нити-леера, называются планерами.

Кордовые модели летают «на привязи». Они управляются рукой авиамоделиста с помощью стальных нитей или тросиков, которые называются кордами. Кордовая модель не может удалиться от спортсмена больше чем на длину корды. Этим кордовая модель отличается от свободнолетающей. На таких моделях устанавливают двигатели внутреннего сгорания или электродвигатели, питающиеся от внешнего источника тока, подаваемого по проводникам-кордам. Бумажные кордовые модели обычно оснащаются электродвигателями. Мы с вами сегодня поговорим о наиболее доступных, и интересных широкому кругу ребят свободнолетающих моделях — тех, что запускаются с рук или катапультой.

Основные понятия о аэродинмики.

Аэродинамические силы

Почему же летают аппараты тяжелее воздуха — самолеты и их модели? Вспомните, как ветер гонит листья и бумажки вдоль улицы, поднимает их вверх. Летящую модель можно сравнить с предметом, гонимым потоком воздуха. Только воздух здесь неподвижен, а модель мчится, рассекая его. При этом воздух не только тормозит полет, но при определенных условиях создает подъемную силу. Посмотрите на рисунок здесь показано сечение крыла самолета. Если крыло будет расположено так, чтобы между его нижней плоскостью и направлением движения самолета был некоторый угол а (называемый углом атаки), то, как показывает практика, скорость потока воздуха, обтекающего крыло сверху, будет больше, чем его скорость снизу крыла. А по законам физики в том месте потока, где скорость больше, давление меньше, и наоборот. Вот почему при достаточно быстром движении самолета давление воздуха под крылом будет больше, чем над крылом. Эта разность давлений поддерживает самолет в воздухе и называется подъемной силой (Рис. 1)

На рисунке 2 показаны силы, действующие на самолет или модель в полете. Суммарное действие воздуха на летательный аппарат представляют в виде аэродинамической силы К. Эта сила является результирующей силой, действующей на отдельные части модели: крыло, фюзеляж, оперение и т. д. Направлена она всегда под углом к направлению движения.

В аэродинамике действие этой силы принято заменять действием двух ее составляющих — подъемной силы и силы сопротивления.

Подъемная сила У всегда направлена перпендикулярно направлению движения, сила сопротивления X — против движения. Сила тяжести С всегда направлена вертикально вниз. Подъемная сила зависит от площади крыла, скорости полета, плотности воздуха, угла атаки аи аэродинамического совершенства профиля крыла. Сила сопротивления зависит от геометрических размеров поперечного сечения фюзеляжа, скорости полета, плотности воздуха и качества обработки поверхностей. При прочих равных условиях дальше летит та модель, у которой поверхность отделана более тщательно. Дальность полета определяется аэродинамическим качеством К, равным отношению подъемной силы к силе сопро-V тивления: К = —, то есть аэродинамическое качество показывает, сколько раз подъемная сила крыл) больше силы сопротивления модели В планирующем полете подъемы сила модели V обычно равна весу дели, а сила сопротивления X в раз меньше, поэтому дальность полета будет в 10—15 раз больше высоты И, с которой начался планируют полет, то есть К= Ют-15, Следовательно, чем легче модель, чем она тщательнее изготовлена, тем большей дальнее полета можно достигнуть.

Центровка модели

Чтобы полет был устойчивым, модель, должна иметь распределенную центровку; центр тяжес " ЦТ должен совпасть с центром давления крыла ЦД или быть несколько впереди его (центром давления крыла называется точка приложения аэродинамической силы).

У прямоугольного профилированного крыла ЦД находится примерно ни первой четверти ширины крыла. У простых бумажных моделей профиль крыла, как правило, очень тонкий либо вообще плоский. У таких крыльев центр давления находится в геометрическом центре площади.

У прямоугольных крыльев центр площади находится на пересечении его диагона(см. р и с. 3). На рисунке 3. показано, как определять центр площади любой другой формы крыла. Нужно вырезать крыло из плотного картона, установить его на ребро линейки и уравновесить. Точка пересечения ребра линейки с линией проведенной посередине крыла, и есть центр тяжести и центр давления крыла Центр тяжести модели находят тогд когда уже изготовлен груз. Для чего сн нужен? У простейших свободнолетающих моделей нет двигателя, и силу ги, движущую модель вперед, созда ее собственная масса. Для повышения инерционности модели в фюзеляж вклеивают груз, вырезанный из фанеры или нескольких слоев плотного картона. Наличие груза в носовой части фюзеляжа обеспечивает достаточну устойчивость модели в полете Зная центр тяжести модели и давления, подбирают правильное пол жение крыла на модели.

У моделей, летающих с большими скоростями (пускаемых с катапульты), ЦТ должен-быть впереди ЦД, а у свободно планирующих — совпадать.На прямолинейности полета особенно сильно сказывается «прогибы» фюзеляжа, то есть искривление в процессе склейки. За его формой нужно следить; и в процессе регулировки, и во время запусков, так и при ударах о препятствия он может деформироваться., Вообще свободнолетающие модели, имея большие скорости полета, часто деформируются при ударах о препятствия, поэтому они должны изготавливаться очень тщательно.

После полета не рекомендуется брать модель за крылья, стабилизатор и киль. Берите их только за носовую часть, то есть за груз. Начиная пробные полеты, старайтесь пускать модели на открытом месте, (там, где нет препятствий и людей). Только изучив «повадки» модели, определив ее траекторию и хорошо отрегулировав, можно запускать ее в залах и коридорах. Но при этом помните, что развившая большую скорость модель может поранить кого-нибудь из зрителей. Поэтому при запусках следите, чтобы предполагаемая траектория вашей модели не была направлена в сторону людей.

Как можно управлять полетом модели? В отличие от кордовых моделей свободнолетающими моделями невозможно управлять после старта. Но можно отрегулировать модель так, чтобы она летела по заданной траектории. Для управления в вертикальной плоскости (по тангажу) на самолетах служат рули высоты. На моделх для этого достаточно отогнуть заднею кромку стабилизатора вверх или вниз. При этом модель будет соответственно набирать высоту (и даже делать мертвую петлю) или пикировать. Для управления по крену достаточно отогнуть в противоположные стороны (вверх и вниз) кромки крыльев. На реальных самолетах на задней кромке крыла установлены специальные управляемы поверхности — элероны.

Для управления в горизонтальной плоскости на самолетах применяются рули направления. На модели для этой цели можно отогнуть в сторону заднюю кромку вертикального оперения. Когда (модель выполняется по схеме «бесхвостка», то есть без стабилизатора, отгиб, задней кромки крыла обеспечивает управление и по крену, и по таннажу, у настоящих самолетов такие рулевые поверхности, выполняющие роль, и элерона, и руля высоты, называются элеронами.

Работа с бумагой. Инструмент.

Для наших бумажных моделей используются, как правило, жесткие виды бумаги: чертежная бумага- ватман, тонкий картон. Для отделки и декоративных аппликаций применяется цветная бумага из наборов для детского творчества. Для резки бумаги рекомендуем изготовить специальные резцы и линейки. Особенно это важно, когда моделированием начинают заниматься младшие школьники. Они, как правило, еще плохо владеют своими руками, и даже обычное вырезание ножницами для них проблема. Их рука привыкла держать только карандаш и ручку. Поэтому рукоятку резца лучше сделать граненой (как карандаш) и слегка изогнутой (с м. рис. 4).

Изготовление таких резцов несложно. Их могут делать сами ребята в кружках технического творчества, в писарских лагерях. Лезвием для резца служит инструментальная сталь от полотна ножовки по металлу. Изготовить лезвие надо попросить старших по нашему чертежу (см. рис. 4) Рукоятки резцов делается из листового оргстекла. Нарежьте заготовки длиной 120 мм. С одного конца засверлите два отверстие сверлом 2 мм на глубину 20 мм, Потом приготовьте настольные тиски — разведите их губки примерно на 50 мм. Нагрейте засверленный конец рукоятки, пока оргстекло не размягчится, и одновременно нагрейте хвостовик. Возьмите лезвие плоскогубцами и вставьте в отверстие нагретой рукоятки. Разогретое, оно войдет туда свободно. После этого между двумя пластинами из оргстекла вставьте резец и зажмите весь этот пакет в губках тисков. Концы пластин должны сойтись между собой и зажать лезвие (см. рис. 4). Подержите так минут 5—10. Рукоятка остынет, и лезвие «намертво» впрессуется в нее. Теперь обработайте рукоятку — снимите наплывы размягченного оргстекла и сделайте грани. Еще немного разогрейте рукоятку, слегка согните и так остудите. Величина прогиба не должна превышать 5—6 мм. Заточите резец на оселке — инструмент готов. Для резки бумаги необходимы еще линейка из оргстекла толщиной 4 — 5 мм, длиной 30—35 см и шириной 30 — 35 мм. На нее обязательно нужно наклеить полоску из изоляционной ленты шириной 5 мм.

Почему линейка должна быть из оргстекла? И зачем изоляционная лента?

Такая линейка прозрачна, по ней легко скользит резец и не тупится об нее. Лента приклеивается для того, чтобы линейка не скользила по бумаге при работе. Ведь детали моделей должны быть изготовлены очень точно. Младшие школьники осваивают работу с этими двумя инструментами после двух-трех занятий. Несколько советов о приемах работы самодельными инструментами. Резец надо держать так, как вы держите карандаш или ручку. Линейку при резке кладите, чтобы ее конец был направлен к плечу режущей руки, то есть резать бумагу резцом нужно толь-ко «к себе». При резне линейку удерживают разведенными пальцами, прижав ее к бумаге и не отнимая руки до тех пор, пока не отрежут нужную деталь. Нажимать на резец сильно не рекомендуется. Можно сломать острый конец лезвия. Лучше провести точно несколько раз. Ни в коем случае не зажимайте резец в кулак, не давите на него с силой!

Если резец не режет, значит, он затупился и его нужно заточить. Необходимо приучить свою руку соразмерять силу нажима. Предлагаемый резец позволит вам вырезать детали любой, самой замысловатой и сложной формы. А вам придется вырезать из цветной бумаги буквы, номера самолетов и другие аппликации. Освоить такую резку можно только тренировкой руки. Чтобы сгибы деталей из бумаги и картона получались аккуратными, ровными, их надо предварительно обработать. Лучше всего их «подрезать». Что значит подрезать бумагу? Нужно по линиям сгиба провести резцом по линейке так, чтобы был надрезан только верхний слой бумаги, примерно на "/з ее толщины. На первый взгляд как будто простая операция. Но начинающим моделистам приходится упражняться по 1,5—2 часа ежедневно, чтобы научиться правильно подрезать бумагу по линиям сгиба. Потренируйтесь и вы. Попробуйте делать из бумаги «гармошку». При этом помните, что надрезанный слой при перегибе должен оставаться снаружи.

На наших развертках моделей все линии сгиба, обозначенные пунктиром (— —-----), надрезаются по лицевой стороне развертки. Линии, обозначенные штрих-пунктиром (—.—.—). надрезаются с обратной стороны. Резать бумагу нужно обязательно на фанерной подложке, а еще лучше на пластиковой (из сополимера). В крайнем случае, если вам не дается операция подрезания сгибов и зы прорезаете бумагу, можно продавливать эти линии тупой стороной столового ножа или специальной «косточкой». Но качество сгибов будет, конечно, хуже.

Несколько слов о клеях.

Толстые сорта бумаги и картон можно склеивать любым клеем. Наиболее надежно склеивают клеи ПВА (поливи-килацетатный), нитроцеллюлозный марки АГО, «Китификс». Клей «Момент» нужно использовать только для «прихватки». Его клеевой шов эластичен, и надежно приклеить детали модели им нельзя. Тонкие сорта бумаги рекомендуется склеязать клеями БФ-2 и нитроцеллю-яозными. Конторский клей КС (силикатный) и клей ПВА размягчают бумагу и при высыхании коробят детали моделей. Детали, выполненные из пенопласта марки ПС (полистирольный, белого цвета), рекомендуется приклеивать только клеем ПВА или БФ-2; детали из желтого пенопласта (марки ПХВ) — нитро-целлюлозными клеями и клеем ПВА. Теперь можно смело приступать к изготовлению моделей.